

(Computational Techniques & Statistical Tool Box With MATLAB)

(New Course)

Faculty Code : 003 Subject Code : 001541

Subject Code: 001541			
Time: 2	$2\frac{1}{2}$ Hours] [Total M	larks :	70
Instruct	cions: (1) Q. No. 1 carries 20 marks Q. No. 2 3 each carries 25 marks. (2) Students can use their own scientific		
1 Filli	ing the blanks and short questions : (Each 1 ma	ark)	20
(1)	Interpolation and extrapolation approached	s are	
(2)	Interpolation and extrapolation formulae assure in the data of the series.	me no	
(3)	The independent variate values in the interpolatitermed as	on are	
(4)	Interpolation helps to estimate thein series of data.	value	
(5)	The finite differences $\left(\Delta^2_{y_2} - \Delta^2_{y_1}\right)$ is called order finite difference.		
(6)	In Newton's backward formula, the origin is value of the argument in the series		
(7)	The origin x_0 in difference table in the Newton's-backward formula is the value of x given value of x .		
(8)	Newton's method of divided differences takes of the spaced arguments.	are of	
(9)	Lagrange's formula does not require the constr of table.	uction	
(10)	Each term of a Lagrange's formula involvarguments is a polynomial of degree	ing <i>n</i>	
MCP-003-	-001541] 1	[Cont	d

- (11) If the interpolating values lies near the beginning or the end of the central interval, _____ formula yields better results.
- (12) Better formula for interpolating a value which lies in the middle of the central interval is ______ formula.
- (13) The relation between u of Striling formula and v of Bessel's formula is ______.
- (14) For Bessel's and Striling's formula, x_0 must be chosen in such a way that u and v lie in the interval
- (15) In Weddle's rule is applicable when the number of intervals n must be a ______.
- (16) In Trapezoidal rule, f(x) is a _____ of x.
- (17) If x = [123:456] then using MATLAB function mean (x,1) write is correct output?
- (18) If x = [345; 113443] then using MATLAB function median (x, 2) write is correct output?
- (19) If x = [012; 345] then using MATLAB function *cumsum* (x, 2) write is correct output?
- (20) If x = [375; 042] then using MATLAB function sort (x, 1) write is correct output?
- 2 (a) Write the answer any **three**: (Each 2 marks)

(1) Obtain Newton's formula for obtaining inverse.

- (2) Usual notation prove that $\mu \delta = \frac{1}{2} \left[\Delta + \nabla \right] = \frac{1}{2} \left[\Delta + \Delta E^{-1} \right]$
- (3) Explain MATLAB function poisspdf.
- (4) Explain MATLAB function std.
- (5) If $y = 1 + x^2$ then find f(1, 5, 7, 11) and prepare the divided difference table.
- (6) Evaluate $\sqrt{50}$ using Newton's formula correct upto seven decimal.

6

- (b) Write the answer any three: (Each 3 marks)
 - (1) Usual notation prove that $E^{\frac{1}{2}} = \mu + \frac{1}{2}\delta$.
 - (2) Obtain Gregory-Newton's Forward Interpolation formula.
 - (3) Explain Talyor's series method.
 - (4) Explain MATLAB function prod and cumprod.
 - (5) Evaluate $\int_0^{10} \frac{1}{1+x^2} dx$ by using Trapezoidal rule.
 - (6) Find by the iteration method, the root near 3.8, of equation $2x \log_{10} x = 7$. Correct up to four decimal places.
- (c) Write the answer any **two**: (Each **5** marks) **10**
 - (1) Obtain Bessel's formula for central difference interpolation.
 - (2) Obtain Gauss backward interpolation formula.
 - (3) Obtain Simpson's $\frac{3}{8}$ rule for numerical integration.
 - (4) Explain If-Else-End structure of MATLAB with example.
 - (5) Give the differential equation $\frac{dy}{dx} = x y$ with the initial condition y = 1 when x = 0, use Picard's method to obtain y for x = 0.2 correct up to five decimal places.
- 3 (a) Write the answer any three: (Each 2 marks) 6
 - (1) Define central and mean operator.
 - (2) Prove that $f(x) = \frac{\Delta^n(x)}{h^n n!}$.
 - (3) Usual notation prove that $\mu \delta = \frac{1}{2} \Delta E^{-1} + \frac{1}{2} \Delta$
 - (4) Explain MATLAB function binopdf.
 - (5) Explain MATLAB function diff.
 - (6) Evaluate $\frac{1}{\sqrt{28}}$ by using Newton's formula. Correct upto six decimal.

9

- (b) Write the answer any three: (Each 3 marks)
- 9
- (1) Usual notation prove that $\Delta = \frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{\delta^2}{4}}$.
- (2) Obtain Gregory-Newton's Backward Interpolation formula.
- (3) Obtain Simpson's $\frac{1}{3}$ rule for numerical integration.
- (4) Explain False position method.
- (5) Explain MATLAB, function sum and cumsum.
- (6) Apply Euler's Maclurin sum formula to find the sums $\frac{1}{10^2} + \frac{1}{11^2} + \frac{1}{12^2} + \dots + \frac{1}{20^2}$ correct to 3 significant figures.
- (c) Write the answer any two: (Each 5 marks) 10
 - (1) Obtain Stirling formula for central difference interpolation.
 - (2) Obtain Gauss forward interpolation formula.
 - (3) Explain For-Loop and While-Loop structure of MATLAB with Example.
 - (4) Explain number display format of MATLAB.
 - (5) Use Talyor's series method to compute y(1.2) correct up to five decimal places when y(x) satisfies the equation $\frac{dy}{dx} = xy$ when y(1.0) = 2.